# Symbol

  • 概述
  • Symbol.prototype.description
  • 作为属性名的 Symbol
  • 实例:消除魔术字符串
  • 属性名的遍历
  • Symbol.for(),Symbol.keyFor()
  • 实例:模块的 Singleton 模式
  • 内置的 Symbol 值

# 1. 概述

ES6 引入了一种新的原始数据类型Symbol,表示独一无二的值。它是 JavaScript 语言的第七种数据类型,前六种是:undefined、null、布尔值(Boolean)、字符串(String)、数值(Number)、对象(Object)。

Symbol 值通过Symbol函数生成。这就是说,对象的属性名现在可以有两种类型,一种是原来就有的字符串,另一种就是新增的 Symbol 类型。凡是属性名属于 Symbol 类型,就都是独一无二的,可以保证不会与其他属性名产生冲突。

注意,Symbol函数前不能使用new命令,否则会报错。这是因为生成的 Symbol 是一个原始类型的值,不是对象。也就是说,由于 Symbol 值不是对象,所以不能添加属性。基本上,它是一种类似于字符串的数据类型。

Symbol函数可以接受一个字符串作为参数,表示对 Symbol 实例的描述,主要是为了在控制台显示,或者转为字符串时,比较容易区分。

注意,Symbol函数的字符串参数只是表示对当前 Symbol 值的描述,因此即使相同参数的Symbol函数的返回值也是不相等的。

// 没有参数的情况
let s1 = Symbol();
let s2 = Symbol();

console.log(s1, s2) // Symbol() Symbol() 在控制台看起来一样,不好区分,所以需要描述参数
typeof s1 // "symbol"
typeof s2 // "symbol"
s1 === s2 // false

// 有参数的情况
let s1 = Symbol('foo');
let s2 = Symbol('foo');

s1 === s2 // false
1
2
3
4
5
6
7
8
9
10
11
12
13
14

如果 Symbol 的参数是一个对象,就会调用该对象的toString()方法,将其转为字符串,然后才生成一个 Symbol 值。

const obj = {
  toString() { // 重写的 toString() 方法
    return 'abc';
  }
};
const sym = Symbol(obj);
sym // Symbol(abc) // 描述是对象参数的 toString() 方法执行结果

1
2
3
4
5
6
7
8

Symbol 值不能与其他类型的值进行运算,会报错。

let sym = Symbol('My symbol');

"your symbol is " + sym
// TypeError: can't convert symbol to string
`your symbol is ${sym}`
// TypeError: can't convert symbol to string
1
2
3
4
5
6

但是,Symbol 值可以显式转为字符串。

let sym = Symbol('My symbol');

String(sym) // 'Symbol(My symbol)'
sym.toString() // 'Symbol(My symbol)'
1
2
3
4

另外,Symbol 值也可以转为布尔值,但是不能转为数值。

let sym = Symbol();
Boolean(sym) // true
!sym  // false

if (sym) {
  // ...
}

Number(sym) // TypeError
sym + 2 // TypeError
1
2
3
4
5
6
7
8
9
10

# 2. Symbol.prototype.description 实例属性

const sym = Symbol('foo');

// 老方法:显示地转为字符串后获取描述字符串
sym.toString() // "Symbol(foo)"

// ES2019 提供了一个实例属性description,直接返回 Symbol 的描述。
sym.description // "foo"
1
2
3
4
5
6
7

# 3. 作为属性名的 Symbol

用于对象的属性名,就能保证不会出现同名的属性。

在对象的内部,使用 Symbol 值定义属性时,Symbol 值必须放在方括号之中。 如果不放在方括号中,该属性的键名就是字符串,而不是那个 Symbol 值。

Symbol 值作为属性名时,该属性还是公开属性,不是私有属性。

let mySymbol = Symbol();

// 第一种写法
let a = {};
a[mySymbol] = 'Hello!';

// 第二种写法
let a = {
  [mySymbol]: 'Hello!'
};

// 第三种写法
let a = {};
Object.defineProperty(a, mySymbol, { value: 'Hello!' });

console.log(a) // { [Symbol()]: 'Hello!' }

// 以上写法都得到同样结果
a[mySymbol] // "Hello!" , 不能用打点访问 a.mySymbol
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

# 4. 实例:消除魔术字符串

魔术字符串指的是,在代码之中多次出现、与代码形成强耦合的某一个具体的字符串或者数值。

function getArea(shape, options) {
  let area = 0;

  switch (shape) {
    case 'Triangle': // 魔术字符串
      area = .5 * options.width * options.height;
      break;
    /* ... more code ... */
  }

  return area;
}

getArea('Triangle', { width: 100, height: 100 }); // 魔术字符串

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

字符串Triangle就是一个魔术字符串。它多次出现,与代码形成“强耦合”,不利于将来的修改和维护。

// 把Triangle写成shapeType对象的triangle属性,这样就消除了强耦合。
const shapeType = {
  triangle: 'Triangle'
};

function getArea(shape, options) {
  let area = 0;
  switch (shape) {
    case shapeType.triangle:
      area = .5 * options.width * options.height;
      break;
  }
  return area;
}

getArea(shapeType.triangle, { width: 100, height: 100 });

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
const shapeType = {
  triangle: Symbol()
};
1
2
3

# 5. 属性名的遍历

Symbol 作为属性名,该属性不会出现在for...infor...of循环中,也不会被Object.keys()Object.getOwnPropertyNames()JSON.stringify()返回。但是,它也不是私有属性,有一个Object.getOwnPropertySymbols()方法,可以获取指定对象的所有 Symbol 属性名。

Object.getOwnPropertySymbols()方法返回一个数组,成员是当前对象的所有用作属性名的 Symbol 值。

const obj = {};
let foo = Symbol("foo");
Object.defineProperty(obj, foo, {
  value: "foobar",
});

for (let i in obj) {
  console.log(i); // 无输出
}

Object.getOwnPropertyNames(obj) // []

Object.getOwnPropertySymbols(obj) // [Symbol(foo)]

1
2
3
4
5
6
7
8
9
10
11
12
13
14

另一个API Reflect.ownKeys() 方法可以返回所有类型的键名,包括常规键名和 Symbol 键名。

let obj = {
  [Symbol('my_key')]: 1,
  enum: 2,
  nonEnum: 3
};

Reflect.ownKeys(obj)
//  ["enum", "nonEnum", Symbol(my_key)]

1
2
3
4
5
6
7
8
9

由于以 Symbol 值作为名称的属性,不会被常规方法遍历得到。我们可以利用这个特性,为对象定义一些非私有的、但又希望只用于内部的方法。

let size = Symbol('size');

class Collection {
  constructor() {
    this[size] = 0;
  }

  add(item) {
    this[this[size]] = item;
    this[size]++;
  }

  static sizeOf(instance) {
    return instance[size];
  }
}

let x = new Collection();
Collection.sizeOf(x) // 0

x.add('foo');
Collection.sizeOf(x) // 1

Object.keys(x) // ['0']
Object.getOwnPropertyNames(x) // ['0']
Object.getOwnPropertySymbols(x) // [Symbol(size)]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

上面代码中,对象x的size属性是一个 Symbol 值,所以Object.keys(x)、Object.getOwnPropertyNames(x)都无法获取它。这就造成了一种非私有的内部方法的效果。

# 6. Symbol.for(),Symbol.keyFor()

Symbol.for()接受一个字符串作为参数,然后全局搜索有没有以该参数作为名称的 Symbol 值。如果有,就返回这个 Symbol 值,否则就新建并返回一个以该字符串为名称的 Symbol 值。且会将这个 Symbol 登记在全局环境中供其他Symbol.for()搜索。


Symbol.for("bar") === Symbol.for("bar") // true

Symbol("bar") === Symbol("bar") // false

console.log(Symbol.for("bar")) // Symbol(bar)
console.log(Symbol("bar")) // Symbol(bar)
Symbol("bar") === Symbol.for("bar") // false
1
2
3
4
5
6
7
8

Symbol.keyFor()方法返回一个已登记的 Symbol 类型值的key。

let s1 = Symbol.for("foo");
Symbol.keyFor(s1) // "foo"

let s2 = Symbol("foo");
Symbol.keyFor(s2) // undefined 变量s2属于未登记的 Symbol 值,所以返回undefined。

1
2
3
4
5
6

# 7. 实例:模块的 Singleton 模式

Singleton 模式指的是调用一个类,任何时候返回的都是同一个实例。

对于 Node 来说,模块文件可以看成是一个类。怎么保证每次执行这个模块文件,返回的都是同一个实例呢?

很容易想到,可以把实例放到顶层对象global。

// mod.js
function A() {
  this.foo = 'hello';
}

if (!global._foo) {
  global._foo = new A();
}

module.exports = global._foo;
1
2
3
4
5
6
7
8
9
10

然后,加载上面的mod.js。

const a = require('./mod.js');
console.log(a.foo);
1
2

上面代码中,变量a任何时候加载的都是A的同一个实例。

但是,这里有一个问题,全局变量global._foo是可写的,任何文件都可以修改。

global._foo = { foo: 'world' };

const a = require('./mod.js');
console.log(a.foo);
1
2
3
4

上面的代码,会使得加载mod.js的脚本都失真。

为了防止这种情况出现,我们就可以使用 Symbol

// mod.js
const FOO_KEY = Symbol.for('foo');

function A() {
  this.foo = 'hello';
}

if (!global[FOO_KEY]) {
  global[FOO_KEY] = new A();
}

module.exports = global[FOO_KEY];
1
2
3
4
5
6
7
8
9
10
11
12

上面代码中,可以保证global[FOO_KEY]不会被无意间覆盖,但还是可以被改写。

global[Symbol.for('foo')] = { foo: 'world' };

const a = require('./mod.js');
1
2
3

如果键名使用Symbol() 而不是 Symbol.for()方法生成,那么外部将无法引用这个值,当然也就无法改写。

// mod.js
const FOO_KEY = Symbol('foo');

// 后面代码相同 ……
1
2
3
4

上面代码将导致其他脚本都无法引用FOO_KEY。但这样也有一个问题,就是如果多次执行这个脚本,每次得到的FOO_KEY都是不一样的。虽然 Node 会将脚本的执行结果缓存,一般情况下,不会多次执行同一个脚本,但是用户可以手动清除缓存,所以也不是绝对可靠。

# 8. 内置的 Symbol 值

ES6 提供了 11 个内置的 Symbol 值,指向语言内部使用的方法。

# (1) Symbol.hasInstance

对象的Symbol.hasInstance属性,指向一个内部方法。当其他对象使用instanceof运算符,判断是否为该对象的实例时,会调用这个方法。比如,foo instanceof Foo在语言内部,实际调用的是Foo[Symbol.hasInstance](foo)

class MyClass {
  [Symbol.hasInstance](foo) {
    return foo instanceof Array;
  }
}

[1, 2, 3] instanceof new MyClass() // true
1
2
3
4
5
6
7

上面代码中,MyClass是一个类,new MyClass() 会返回一个实例。该实例的Symbol.hasInstance方法,会在进行instanceof运算时自动调用,判断左侧的运算子是否为Array的实例。

下面是另一个例子。

class Even {
  static [Symbol.hasInstance](obj) {
    return Number(obj) % 2 === 0;
  }
}

// 等同于
const Even = {
  [Symbol.hasInstance](obj) {
    return Number(obj) % 2 === 0;
  }
};

1 instanceof Even // false
2 instanceof Even // true
12345 instanceof Even // false
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

# (2) Symbol.isConcatSpreadable

对象的Symbol.isConcatSpreadable属性等于一个布尔值,表示该对象用于Array.prototype.concat()时,是否可以展开。

let arr1 = ['c', 'd'];
['a', 'b'].concat(arr1, 'e') // ['a', 'b', 'c', 'd', 'e']
arr1[Symbol.isConcatSpreadable] // undefined

let arr2 = ['c', 'd'];
arr2[Symbol.isConcatSpreadable] = false;
['a', 'b'].concat(arr2, 'e') // ['a', 'b', ['c','d'], 'e']
1
2
3
4
5
6
7

上面代码说明,数组的默认行为是可以展开,Symbol.isConcatSpreadable默认等于undefined。该属性等于true时,也有展开的效果。

类似数组的对象正好相反,默认不展开。它的Symbol.isConcatSpreadable属性设为true,才可以展开。

let obj = {length: 2, 0: 'c', 1: 'd'};
['a', 'b'].concat(obj, 'e') // ['a', 'b', obj, 'e']

obj[Symbol.isConcatSpreadable] = true;
['a', 'b'].concat(obj, 'e') // ['a', 'b', 'c', 'd', 'e']
1
2
3
4
5

Symbol.isConcatSpreadable属性也可以定义在类里面。

class A1 extends Array {
  constructor(args) {
    super(args);
    this[Symbol.isConcatSpreadable] = true;
  }
}
class A2 extends Array {
  constructor(args) {
    super(args);
  }
  get [Symbol.isConcatSpreadable] () {
    return false;
  }
}
let a1 = new A1();
a1[0] = 3;
a1[1] = 4;
let a2 = new A2();
a2[0] = 5;
a2[1] = 6;
[1, 2].concat(a1).concat(a2)
// [1, 2, 3, 4, [5, 6]]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

上面代码中,类A1是可展开的,类A2是不可展开的,所以使用concat时有不一样的结果。

注意,Symbol.isConcatSpreadable的位置差异,A1是定义在实例上,A2是定义在类本身,效果相同。

# (3) Symbol.species

对象的Symbol.species属性,指向一个构造函数。创建衍生对象时,会使用该属性。

class MyArray extends Array {
}

const a = new MyArray(1, 2, 3);
const b = a.map(x => x);
const c = a.filter(x => x > 1);

console.log(b instanceof MyArray) // true
console.log(c instanceof MyArray) // true

console.log(b instanceof Array) // true
console.log(c instanceof Array) // true
1
2
3
4
5
6
7
8
9
10
11
12

上面代码中,子类MyArray继承了父类ArrayaMyArray的实例,bca的衍生对象。你可能会认为,bc都是调用数组方法生成的,所以应该是数组(Array的实例),但实际上它们同时也是MyArray的实例。

Symbol.species 属性就是为了解决这个问题而提供的。现在,我们可以为MyArray设置Symbol.species属性。

class MyArray extends Array {
  static get [Symbol.species]() { return Array; }
}
1
2
3

上面代码中,由于定义了Symbol.species属性,创建衍生对象时就会使用这个属性返回的函数,作为构造函数。这个例子也说明,定义Symbol.species属性要采用get取值器。默认的Symbol.species属性等同于下面的写法。

static get [Symbol.species]() {
  return this;
}
1
2
3

现在,再来看前面的例子。

class MyArray extends Array {
  static get [Symbol.species]() { return Array; }
}

const a = new MyArray();
const b = a.map(x => x);

b instanceof MyArray // false
b instanceof Array // true
1
2
3
4
5
6
7
8
9

上面代码中,a.map(x => x)生成的衍生对象,就不是MyArray的实例,而直接就是Array的实例。

再看一个例子。

class T1 extends Promise {
}

class T2 extends Promise {
  static get [Symbol.species]() {
    return Promise;
  }
}

new T1(r => r()).then(v => v) instanceof T1 // true
new T2(r => r()).then(v => v) instanceof T2 // false
1
2
3
4
5
6
7
8
9
10
11

上面代码中,T2定义了Symbol.species属性,T1没有。结果就导致了创建衍生对象时(then方法),T1调用的是自身的构造方法,而T2调用的是Promise的构造方法。

总之,Symbol.species的作用在于,实例对象在运行过程中,需要再次调用自身的构造函数时,会调用该属性指定的构造函数。它主要的用途是,有些类库是在基类的基础上修改的,那么子类使用继承的方法时,作者可能希望返回基类的实例,而不是子类的实例。

# (4) Symbol.match

对象的Symbol.match属性,指向一个函数。当执行str.match(myObject)时,如果该属性存在,会调用它,返回该方法的返回值。

String.prototype.match(regexp)
// 等同于
regexp[Symbol.match](this)

class MyMatcher {
  [Symbol.match](string) {
    return 'hello world'.indexOf(string);
  }
}

'e'.match(new MyMatcher()) // 1

1
2
3
4
5
6
7
8
9
10
11
12

# (5) Symbol.replace

对象的Symbol.replace属性,指向一个方法,当该对象被String.prototype.replace方法调用时,会返回该方法的返回值。

String.prototype.replace(searchValue, replaceValue)
// 等同于
searchValue[Symbol.replace](this, replaceValue)
1
2
3

下面是一个例子。

const x = {};
x[Symbol.replace] = (...s) => console.log(s);

'Hello'.replace(x, 'World') // ["Hello", "World"]
1
2
3
4

Symbol.replace方法会收到两个参数,第一个参数是replace方法正在作用的对象,上面例子是Hello,第二个参数是替换后的值,上面例子是World

对象的Symbol.search属性,指向一个方法,当该对象被String.prototype.search方法调用时,会返回该方法的返回值。

String.prototype.search(regexp)
// 等同于
regexp[Symbol.search](this)

class MySearch {
  constructor(value) {
    this.value = value;
  }
  [Symbol.search](string) {
    return string.indexOf(this.value);
  }
}
'foobar'.search(new MySearch('foo')) // 0
1
2
3
4
5
6
7
8
9
10
11
12
13

# (7) Symbol.split

对象的Symbol.split属性,指向一个方法,当该对象被String.prototype.split方法调用时,会返回该方法的返回值。

String.prototype.split(separator, limit)
// 等同于
separator[Symbol.split](this, limit)
1
2
3

下面是一个例子。

class MySplitter {
  constructor(value) {
    this.value = value;
  }
  [Symbol.split](string) {
    let index = string.indexOf(this.value);
    if (index === -1) {
      return string;
    }
    return [
      string.substr(0, index),
      string.substr(index + this.value.length)
    ];
  }
}

'foobar'.split(new MySplitter('foo'))
// ['', 'bar']

'foobar'.split(new MySplitter('bar'))
// ['foo', '']

'foobar'.split(new MySplitter('baz'))
// 'foobar'
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

上面方法使用Symbol.split方法,重新定义了字符串对象的split方法的行为

# (8) Symbol.iterator

对象的Symbol.iterator属性,指向该对象的默认遍历器方法。

const myIterable = {};
myIterable[Symbol.iterator] = function* () {
  yield 1;
  yield 2;
  yield 3;
};

[...myIterable] // [1, 2, 3]
1
2
3
4
5
6
7
8

对象进行for...of循环时,会调用Symbol.iterator方法,返回该对象的默认遍历器,详细介绍参见《Iterator 和 for...of 循环》一章。

class Collection {
  *[Symbol.iterator]() {
    let i = 0;
    while(this[i] !== undefined) {
      yield this[i];
      ++i;
    }
  }
}

let myCollection = new Collection();
myCollection[0] = 1;
myCollection[1] = 2;

for(let value of myCollection) {
  console.log(value);
}
// 1
// 2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

# (9) Symbol.toPrimitive

对象的Symbol.toPrimitive属性,指向一个方法。该对象被转为原始类型的值时,会调用这个方法,返回该对象对应的原始类型值。

Symbol.toPrimitive被调用时,会接受一个字符串参数,表示当前运算的模式,一共有三种模式。

  • Number:该场合需要转成数值
  • String:该场合需要转成字符串
  • Default:该场合可以转成数值,也可以转成字符串
let obj = {
  [Symbol.toPrimitive](hint) {
    switch (hint) {
      case 'number':
        return 123;
      case 'string':
        return 'str';
      case 'default':
        return 'default';
      default:
        throw new Error();
     }
   }
};

2 * obj // 246 obj进行强制转换为 number,传入obj.[Symbol.toPrimitive]('number')
3 + obj // '3default'
obj == 'default' // true
String(obj) // 'str'
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

# (10) Symbol.toStringTag

对象的Symbol.toStringTag属性,指向一个方法。在该对象上面调用 Object.prototype.toString 方法时,如果这个属性存在,它的返回值会出现在 toString 方法返回的字符串之中,表示对象的类型。也就是说,这个属性可以用来定制 [object Object][object Array]object 后面的那个字符串。

// 例一
({[Symbol.toStringTag]: 'Foo'}.toString())
// "[object Foo]"

// 例二
class Collection {
  get [Symbol.toStringTag]() {
    return 'xxx';
  }
}
let x = new Collection();
Object.prototype.toString.call(x) // "[object xxx]"

1
2
3
4
5
6
7
8
9
10
11
12
13

ES6 新增内置对象的Symbol.toStringTag属性值如下。

  • JSON[Symbol.toStringTag] :'JSON'
  • Math[Symbol.toStringTag] :'Math'
  • Module 对象M[Symbol.toStringTag] :'Module'
  • ArrayBuffer.prototype[Symbol.toStringTag] :'ArrayBuffer'
  • DataView.prototype[Symbol.toStringTag] :'DataView'
  • Map.prototype[Symbol.toStringTag] :'Map'
  • Promise.prototype[Symbol.toStringTag] :'Promise'
  • Set.prototype[Symbol.toStringTag] :'Set'
  • %TypedArray%.prototype[Symbol.toStringTag] :'Uint8Array'等
  • WeakMap.prototype[Symbol.toStringTag] :'WeakMap'
  • WeakSet.prototype[Symbol.toStringTag] :'WeakSet'
  • %MapIteratorPrototype%[Symbol.toStringTag] :'Map Iterator'
  • %SetIteratorPrototype%[Symbol.toStringTag] :'Set Iterator'
  • %StringIteratorPrototype%[Symbol.toStringTag] :'String Iterator'
  • Symbol.prototype[Symbol.toStringTag] :'Symbol'
  • Generator.prototype[Symbol.toStringTag] :'Generator'
  • GeneratorFunction.prototype[Symbol.toStringTag] :'GeneratorFunction'

# (11) Symbol.unscopables

对象的Symbol.unscopables属性,指向一个对象。该对象指定了使用with关键字时,哪些属性会被with环境排除。

Array.prototype[Symbol.unscopables]
// {
//   copyWithin: true,
//   entries: true,
//   fill: true,
//   find: true,
//   findIndex: true,
//   includes: true,
//   keys: true
// }

Object.keys(Array.prototype[Symbol.unscopables])
// ['copyWithin', 'entries', 'fill', 'find', 'findIndex', 'includes', 'keys']
1
2
3
4
5
6
7
8
9
10
11
12
13

上面代码说明,数组有 7 个属性,会被with命令排除。

// 没有 unscopables 时
class MyClass {
  foo() { return 1; }
}

var foo = function () { return 2; };

with (MyClass.prototype) {
  foo(); // 1, 执行 MyClass 自身的 foo()
}

// 有 unscopables 时
class MyClass {
  foo() { return 1; }
  get [Symbol.unscopables]() {
    return { foo: true };
  }
}

var foo = function () { return 2; };

with (MyClass.prototype) {
  foo(); // 2, MyClass 内部的 foo 属性被排除,所以会到外层作用域查找 foo 使用
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24